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1. SOME EARLY HISTORY

1.1. Introduction
The termm ‘imoduli’ was introduced by B. Riemann in 1857:

4

es hangt also eine Klasse von Systemen gleichverzweigter 2p + 1-fach
zusammenhangender Funktionen und die zu thr gehorende Klassen algebra-

ischer Gleichungen von 3p — 3 stetig veranderlichen Grossen ab, welche die _
Moduln dieser Klasse genannt werden sollen.’ 151

B. Riemann— Theorie der Abel’schen Funktionen, Journ. reine angew. Math.
(Crelle), 54 (1857), pp. 115-155, (see p. 134).

In mathematics the word ‘moduli’ has various meanings. In our context,
however, 1t only occurs in plural and refers to the essential parameters on
which certain algebraic structures depend (usually in a continuous way).
Used in this sense the term stems from Riemann, who introduced 1t in his
study of Riemann surfaces. He described these as coverings of the (Rie-
mann) sphere and proved that the number of essential parameters equals
3g — 3 for a Riemann surface of genus g > 2 (equivalently, for an algebraic
curve of that genus). The genus g is a discrete invariant which only assumes
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non-negative integral values, whereas the (complex) 3g — 3 parameters vary
continuously. The word ‘moduli’ indicates the (number of) parameters on
which a geometric structure like a Riemann surface depends. Frequently
these ‘modull’ themselves satisty algebraic equations and, hence, can be
identified with the points of an algebraic variety, called the ‘moduli space’.

Elliptic curves form an example. An elliptic curve E is characterized —up
to 1somorphism over an algebraically closed field - -by the invariant j(E') and
hence corresponds with a point on the affine line A'. The set of (isomor-
phism classes of) elliptic curves corresponds with the affine line. General-
1zation of this to elliptic curves endowed with an additional structure, such
as a point of a certain order on the curve, leads to ‘modular curves’. The
geometry and number theory of modular curves were extensively studied in
the beginning of this century by F. Klein and others.

The notion of elliptic curve can be generalized by considering algebraic
curves of higher genus (g > 1) and by considering group varieties of higher
dimension (g > 1). This in turn leads to generalizations of the modular
curves mentioned above: the moduli space M, of algebraic curves of genus
g and the moduli space A, of abelian varieties of dimension g (with a
polarization). Both generalizations and both types of moduli space are in
the center of present-day mathematics. However, the study of these spaces
was (and is) far from easy and the theory was developed only with great
difficulty. Here O. Teichmiiller’s work on the moduli of algebraic curves was
important.

1.2. History in a nutshell

A full historic overview of the period 1860-1960 would take far more space
than i1s available here. Apart from some intermediate results, in 1960—
remarkably enough-—still no satistactory algebraic-geometric theory of mod-
ull spaces was developed. The reason is that it is not only important to know
that the parameters or moduli satisfy certain equations, but as much that
these equations are universal. However, tackling that problem-—and even
formulating it properly—-—required the revolutionary conceptual apparatus,
called the theory of schemes, introduced by A. Grothendieck in the 1960’s
in algebraic geometry.

His fundamental work, building on results by A. Weil, O. Zariski, J.-P.
Serre and many others, allows a unified treatment of complex geometry and
number theory: in short, algebraic geometry in all its aspects. Grothendieck
introduces the concept of ‘representable functor’ and shows that the fun-
damental problem of moduli is to determine whether certain functors are
representable. From this viewpoint all properties of moduli spaces acquire
a ‘modular’ interpretation, which enables in principle a far better under-
standing of this class of varieties than of other ones.

Characteristic for this transition period is J.-I. Igusa’s work [2] on the
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moduli (over Z) of genus 2 curves and the way it was received in the ‘French’
world of mathematics. P. Samuel starts his Séminaire Bourbaki lecture as
follows:

‘Stgnalons aussitét que le travail d’Iqusa ne résoud pas, pour les courbes de
genre 2, le ‘probleme des modules’ tel qu’il a été posé par Grothendieck a
diverses reprises dans ce Sémainaire.” P. Samuel-—Invariants arithmétiques

des courbes de genre 2. Sém. Bourbaki 14 (1961/62), Exp. 226, Décembre
1961.

D. Mumtord takes up Grothendieck’s challenge in trying to construct the
moduli spaces of curves and abelian varieties (in the sense of Grothendieck)
'1]. For many years he is the innovator and great stimulator for the develop-
ment of the basics of moduli and succeeds in drawing many researchers into
this field. It is fair to say that Mumford learned us, among other things, to
handle Grothendieck’s new, formidable conceptual apparatus.

Following this fundamental work, including the compactification of M,
jointly with P. Deligne, harvesting started with the theorem of Harris and
Mumford (1982), stating that for g sufficiently large the moduli spaces M,
are ‘of general type’. It was the first major success. The concept of moduli
spaces has spread ever since over large parts of present-day mathematics
and has fully proved its value.

Evidence for this is abundant. E. Witten showed in the mid-1980’s that
the moduli spaces of curves are of fundamental importance in theoretical
physics. Here the Riemann surface appears as a ‘dressed-up’ version of the
Feynman diagram in physics. Interestingly, physical intuition has led to
the amazing ‘Witten conjectures’ concerning the cohomology of the moduli
spaces of curves (proved by Kontsevich a few years afterwards). Moduli
spaces are also central in the recent proof of Fermat’s Last Theorem by A.
Wiles.

Present research also extends to other moduli spaces than those of curves
and abelian varieties. In particular we are witnessing an explosive growth
of research on moduli of vector bundles.

Looking back we must admit that at that time none of us foresaw such a
spectacular development and success for the theory of modula.

1.8. Intercity Seminar

This seminar has its origins in a seminar started around 1958 under the
name ‘schovenclub’. This owed its existence to the inspiring personality of
N.H. Kuiper who felt that Dutch mathematicians should become acquainted
with the concept of ‘sheat’. Thus a platform for cooperation was established
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that has shown a great vitality up to the present day. The seminar’s perma-
nent anmm was the discussion of new developments, usually in geometry and
algebra, and later including number theory. During the period 1958-1981
there was no fixed structure and subjects varied. For example, starting
i the late 1970’s E.J.N. Looijenga, C.A.M. Peters and J.H.M. Steenbrink
mitiated joint activities in the area of complex geometry and singularities,
and at the instigation of F. Oort the arithmetic aspect of geometry was
also emphasized. Often new and unpublished results were presented, which
enabled young researchers to familiarize with new aspects, sometimes long
betore publication in international journals. This included difficult and deep
results, which were not easy to master.

In 1980-1981 the Intercity Seminar focused on modular curves. This
proved to be a nursery for new talent and a source of intensive coopera-
tion. Around the same time the Dutch research structure in mathematics
was enhanced by the creation by NWO of ‘Landelijke Werkgemeenschap-
pen’, managed by SMC. Within this framework two projects: ‘Moduli’ and
‘Singularities’, were initiated. These projects have guided for many years——

jointly and alternately —the activities of what was called the ‘Intercity Sem-
: 7
inar’.

2. THE MODULI PROJECT

The project was jointly proposed by G.B.M. van der Geer, F. QOort and
C.A.M. Peters; H.W. Lenstra Jr. and J.P. Murre acted as advisors. Re-
search results included three Ph.D. theses by L.N.M. van Geemen (1985;
cum laude), C.F. Faber (1988) and J. Top (1989). The project’s applicants,
all experts in algebraic geometry, differed in education and interests, which
turned out to be quite an advantage. Researchers in the project included,
apart from the three project leaders, several graduate students and senior
researchers. Collaboration formed one of the most fascinating aspects for
each of us. An ongoing avalanche of new results in the fiecld-—a pleasant
surprise—was gratefully exploited and frequently led to the set-up of new
research.

Over the years the project gave us the opportunity to invite several math-
ematicians for short visits as well as for longer stays. These stimulating
visits have led to a broad spectrum of research, useful developments and
interesting publications.

Characteristic for the Moduli Project was that it naturally emerged from
an existing and well-functioning collaboration between the members of a
small, enthousiastic group of mathematicians. The initiators’ foremost con-
cern was to stimulate the field of algebraic geometry with NWO-support.
Inviting eminent mathematicians from abroad was considered as impor-
tant as appointing promising graduate students, certainly in a time of ever
shrinking academic budgets (when, indeed, will that stop?).
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In the sections below we briefly describe the work of the three Ph.D.
theses completed in the framework of the Moduli Project. This work was,
in the focus of international developments at the time, of high quality, and
i all cases proved to be a stepping-stone to further research, presently in
full swing.

3. THE SCHOTTKY PROBLEM
The period mapping (Torelli mapping)

J: My — Ay

assigns to an (isomorphism class of an) algebraic curve C' its principally
polarized Jacobian (Jac(C'),®.). This mapping is injective at geometric
points, as Torelli proved in 1914 (over the complex numbers). The closure
of the image of this mapping

(J(My)) =T, C Ag.1

1s usually called the Torelli locus or Jacobi locus. For g > 4 this yields a
lower-dimensional subvariety in A, ;. Riemann had asked for a characteri-
zation of this subvariety of the ‘periods’. F. Schottky, in 1888 for ¢ = 4, and
F'. Schottky and H. Jung in 1909 for general g, indicated relations which
were expected to characterize the Jacobi locus. When Van Geemen [3]
started to work on this classical problem, only partial results were known.
His main result states that the Jacob: locus 1s a component of the Schottky
locus for all g. His proof contains an induction on ¢, the most important
1dea being to intersect the Schottky locus with the boundary of the moduli
space, 1n a blown-up compactification of the moduli space A,. Modestly,
Van Geemen notices that this idea was already present implicitly in work by
Schottky and by F. Frobenius in 1888 and 1889, but he deserves credit for
being the first to understand the argumentation and to carry out the proof.
His work links to very different methods developed for the same problem
by G.E. Welters, E. Arbarello and C. De Concini, as well as by T. Shiota
in connection with the Novikov conjecture (stating that the Jacobi locus is
described by solutions of the Kadomtsev-Petviashvili differential equations).

These elegant and fine results on a classical problem are indicative for
Van Geemen’s insight in geometry which he combined with an extensive
arsenal of techniques in algebraic geometry. Clearly he vastly profited from
his participation in the Moduli Project and --vice versa--the project from
his insight and dedication.

4. CHOW RINGS OF MODULI SPACES OF CURVES

Studying varieties frequently involves the use of a cohomology theory. How-
ever, the ring of cycles modulo rational equivalence on that variety provides
a finer invariant.
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Mumiord was one of the first to apply this method to moduli spaces of
curves [6]. Since the moduli space is usually singular, Q-coefficients have
to be used. Moreover, since a regular covering was lacking at that time (it
was discovered only much later), even the definition of a Chow ring is not
obvious in this case. Mumford founded this theory and he computed the
Chow ring for the moduli space of curves of genus 2.

In his Ph.D. thesis [4], Faber studies the Chow rings of a variety of moduli
spaces of curves. His main result is the complete computation of the Chow
ring A*(M3) of a compactification of the moduli space of curves of genus
3. This space has a natural interpretation as the union of subspaces, like
the boundary Mz — M3, the hyperelliptic locus Hs, and the moduli space
(P'* — A)/PGL(3) of plane, non-singular curves of degree 4. In this way
generators of the various Chow groups of M4 can be given. Now the difficult
part starts: which are the relations between the obvious generators? Faber
invents a fascinating method and applies it with virtuosity. In order to find
relations between classes of cycles of codimension & on this 6-dimensional
varlety M3, ‘test objects’ in codimension 6 — A are selected, and all inter-
section products between cycles and test objects are calculated, until from
that the structure of the Chow ring follows. When shortly afterwards E.
Witten proposed his conjectures concerning the intersection numbers, these
could be successtully tested with Faber’s results for g = 3.

5. L-SERIES IN GEOMETRY

Whereas the Ph.D. theses by Van Geemen and Faber treated typically ge-
ometric problems, Top’s work [5] is closer to number theory, although ge-
ometry is frequently drawn upon as motivation or as a tool. L-series are
central here. These show up, for example, in connection with cycles on an
abelian threefold. Ceresa proved that the cycle C' — C~ for a generic curve
of genus 3 yields a non-torsion class. Top links this with a conjecture by S.
Bloch concerning zero’s of an L-series; his work provides evidence for this
conjecture.

Top also considers L-series occurring in the theory of Siegel modular
forms. In this difficult field understanding of the G L, case is dawning,
but other cases still seem tar beyond our grasp. Top works out examples, il-
lustrating a conjecture by H. Yoshida about Siegel modular forms of weight
2 belonging to Sp(Z)—an area now in full swing.

6. WHAT HAPPENED AFTERWARDS

These developments, from the ‘schovenclub’ through the ‘intercity seminar’
to Moduli and Singularities , have generated a group of Dutch mathemati-
cians well-versed in algebraic geometry. Abroad our young researchers, in
collaboration and at meetings, now easily match world level, as is evidenced
by their addresses at important conferences and their usually easy acqui-
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sition of good positions (abroad!) in these difficult times. Our research is
linked, in depth and in diversity, with the work of the best people in the
field, and 1s published in the leading journals. The breeding ground, to
which the Moduli Project belonged, proved to be very valuable.

Collaboration did not stop when the Moduli Project terminated. Arith-
metic aspects were elaborated in a project ‘Arithmetic Algebraic Geometry’,
and geometric aspects of moduli theory are addressed in a project studying
moduli of curves and of Riemann surfaces. Thus collaboration started in
the Moduli Project has borne fruit and scientific methods developed in the
project are used and expanded.

We expect moduli spaces to gain significance and to be a focal point in the
research of the coming decades. As in all good mathematics, closer study
generates more questions than solutions. Assessing the project’s impact
after ten of twenty years may yield an even more positive picture than at
present.
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